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Nasopharyngeal carcinoma (NPC) most frequently occurs in south-
ern China and southeast Asia. Epidemiology studies link NPC to
genetic predisposition, Epstein–Barr virus (EBV) infection, and envi-
ronmental factors. Genetic studies indicate that mutations in
chromatin-modifying enzymes are the most frequent genetic alter-
ations in NPC. Here, we used H3K27ac chromatin immune precipita-
tion followed by deep sequencing (ChIP-seq) to define the NPC
epigenome in primary NPC biopsies, NPC xenografts, and an NPC
cell line, and compared them to immortalized normal nasopharyn-
geal or oral epithelial cells. We identified NPC-specific enhancers and
found these enhancers were enriched with nuclear factor κB (NF-κB),
IFN-responsive factor 1 (IRF1) and IRF2, and ETS family members
ETS1 motifs. Normal cell-specific enhancers were enriched with basic
leucine zipper family members and TP53motifs. NPC super-enhancers
with extraordinarily broad and high H3K27ac signals were also iden-
tified, and they were linked to genes important for oncogenesis in-
cluding ETV6. ETV6 was also highly expressed in NPC biopsies by
immunohistochemistry. High ETV6 expression correlated with a poor
prognosis. Furthermore, we defined the EBV episome epigenetic
landscapes in primary NPC tissue.

nasopharyngeal carcinoma | super-enhancer | H3K27ac |
Epstein–Barr virus | ETV6

Nasopharyngeal carcinoma (NPC) is a leading cancer in
southern China. NPC incidence is also high in southeast Asia

and northern Africa. In 2008, >84,000 new cases were diagnosed
and >51,000 patients died from NPC worldwide (1, 2). While less
common in the United States with 0.5–2 cases per 100,000 people
annually, NPC is the most frequently occurring malignancy in
adults in Guangdong Province, China, where NPC incidence
reaches 80 cases per 100,000 people annually and has thus been
nicknamed “Guangdong Cancer” (3). Since NPC occurs at a
hidden anatomic location and lacks specific symptoms, many pa-
tients at initial NPC diagnosis already have metastatic disease. At
diagnosis, 60% of patients have lymph node metastases, and 4.2%
have distant metastases (4). While NPC is sensitive to radiother-
apy and chemotherapy, patients with distant metastatic disease
have very poor prognoses, with a median survival of just 13 mo
and with 3- and 5-y survival of <15% and <5%, respectively (5).
NPC derives from nasopharyngeal epithelial cells and can be clas-
sified into keratinizing squamous cell carcinoma, nonkeratinzing
carcinoma, and undifferentiated carcinoma (2). In endemic area,
>97% of NPCs are undifferentiated carcinoma (2). Epidemiology
studies indicate that genetic predisposition, Epstein–Barr virus
(EBV) infection, and environmental factors are associated with
NPC pathogenesis (6–8).
Genetic and epigenetic alterations play critical roles in NPC

pathogenesis. First-degree relatives of NPC patient have greatly
elevated risk developing NPC (8). Genome-wide association stud-
ies identified NPC susceptibility loci at HLA region, TNFRSF19,
MDS1-EVI, and the CDKN2A-CDKN2B gene cluster on 9p21
(9, 10). Chromosome 9q21 and 3p21.3 are also frequently deleted

in NPCs (8). Genes encoded in these loci includes p14ARF,
p16INK4A, and RASSF1A, and they can also be inactivated by
promoter hypermethylation (8). p14ARF and p16INK4A can induce
senescence during oncogenic stress. DNA hypermethylation fre-
quently occurs at promoters of tumor suppressors in NPC (11, 12).
Genome-wide studies found NPC has more hypermethylation than
11 other cancer types characterized by the Cancer Genome Atlas
project (13), similar to EBV-positive gastric cancers (14). EBV-
encoded latent membrane protein 1 (LMP1) activates the expres-
sion of DNA methyl transferase (DNMT) 1, 3A, and 3B to down-
regulate CDH1 (E-Cadherin) expression (15). In addition to DNA
methylation, histone-modifying enzymes including epigenetic writ-
ers, EZH2, EP300, and cofactors BMI1 have been implicated
in NPC pathogenesis and prognosis. EZH2 is a member of the
polycomb repressive complex 2 (PRC2) that methylates H3K27
and causes transcription repression. EZH2 is frequently expressed
at a high level in NPC, and its expression correlates with poor
prognosis (16). EP300, on the other hand, acetylates H3K27 and is
correlated with active enhancers or promoters. High EP300 expres-
sion correlates with poor overall survival (16). BMI1 is a member of
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the polycomb repressive complex 1 (PRC1) and is a cofactor for
H2AK119 monoubiquitination upon PRC1 binding to H3K27me3.
BMI1 can repress PTEN tumor suppressor in nasopharyngeal ep-
ithelial cells (17). NPC whole-exon sequencing found that chro-
matin modification pathway has the highest mutation frequency
(18). The genes mutated in this pathway include ARID1A, BAP1,
MLL2, MLL3, TET1, TET2, TET3, and TSHZ3. ARID1A is a
member of the SWI/SNF family chromatin remodeling protein with
ATPase and helicase activities. MLL2 and MLL3 methylate H3K4
and TETs are important for 5 mC modifications (18). These mu-
tations are associated with poor overall survival and higher EBV
burden. NPCs have mutations in chromatin modification pathway
also have higher mutation rates in other genes (18). Histone
modifications are frequently altered in different cancers (19).
H3K4 methylations mark active promoters or enhancers, while
H3K27 methylation marks repressed genes. H3K27 acetylation
marks both active enhancers and promoters (19). No genome-wide
NPC histone modification profiles have been reported.
Transcription profiling using microarray and RNA-seq identified

many cell genes up-regulated in NPC (20–22). Some of these genes
can be used as biomarker to predict patient’s response to treat-
ments or prognosis. These genes include CD147, Caveolin-1, and
matrix metalloproteinase 11. Little is known about how these
genes are regulated in NPC.
EBV is the first human DNA tumor virus, discovered more than

50 y ago (23). EBV infects both B lymphocytes and oral epithelial
cells and establishes lifelong persistence (2). EBV is associated
with posttransplant lymphoproliferative disease (PTLD), AIDS
lymphomas, ∼50% of Hodgkin’s lymphoma, 10% of gastric car-
cinoma, and almost all undifferentiated NPC (2). Three different
types of EBV latency are associated with different cancers. In
Burkitt’s lymphoma, EBV type I latency program is predominant.
These cancer cells express EBV nuclear antigen (EBNA) 1,
noncoding RNA EBER, and miRNAs. EBV type II latency is seen
in NPC and Hodgkin’s lymphoma (24, 25). These cancer cells
express LMP1 and 2, EBNA1, EBERs, and miRNAs. EBV type
III latency is often seen in PTLD where all EBV latency products,
EBNAs (1, LP, 2, 3A, 3B, and 3C), LMPs, EBERs and viral
miRNAs, are expressed.
Active EBV replication precedes NPC development (6). De-

tection of elevated IgA antibody titers against EBV early antigen
and viral capsid antigens has been used to screen for early NPC
patients (26). Peripheral-blood EBV DNA levels correlate with
NPC occurrence, relapse, metastasis, and prognosis (27). Non-
coding RNAs are the most consistent and abundant viral products
in NPC cells. The two main categories of these noncoding RNAs
are the EBERs, single-strand RNAs of about 170 pb with a com-
plex secondary structure, and the viral miRNAs of the BART
family, which often account for as much as one-third of all miR-
NAs contained in malignant NPC cells (2). A few EBV-encoded
proteins are consistently expressed in NPCs. However, their ex-
pression is highly heterogeneous from one tumor to another and
inside a given tumor. EBNA1, which is required for the persis-
tence of the EBV episome in proliferating malignant cells, is the
most consistently expressed gene. The latent membrane proteins,
LMP1, LMP2A, and LMP2B are less consistently expressed and
often at a low abundance. LMP1 cytoplasmic tail binds to tumor
necrosis factor receptor-associated factors to constitutively acti-
vate NF-κB (28). NF-κB activates the expression of many cell
genes to promote cell growth, survival, and metastasis (29–31).
LMP1 expression can be detectable in some premalignant pre-
cursor lesions of NPC, for example in monoclonal carcinoma in
situ (32). Elevated LMP1 expression levels correlate with poorer
prognosis (21). LMP2A is more ubiquitously expressed in NPCs
and can transform epithelial cell lines and activate phosphatidy-
linositol 3-kinase (PI3-K)/Akt survival pathway (2, 33). LMP2A
can affect NF-κB activation with LMP1 in B cell but negatively
affect NF-κB in NPC cells (34, 35).

EBV infection of primary resting B cells causes dramatic epi-
genetic reprogramming and the establishment of immortalized
lymphoblastoid cell lines (LCLs) (36, 37). Despite EBV’s well-
defined roles in B-cell lymphomas and the likelihood that it is
similarly important in NPC oncogenesis (38), there is considerably
less knowledge of EBV’s role in NPC histone modifications. Epi-
genetic changes are reversible. Epigenetic modifiers are proven
“druggable” targets in cancer treatment (39). Understanding of the
NPC epigenetic landscape will likely allow us to identify unique
therapeutics.

Results
NPC Epigenetic Landscapes. To identify active NPC promoters and
enhancers, H3K27ac chromatin immunoprecipitation followed by
deep sequencing (ChIP-seq) was used. Two untreated primary
NPC biopsies from north Africa, EBV-positive NPC cell line
C666-1 from untreated patient (40), and NPC xenografts C15,
C17, and C18 were included in the study. C15 was from an un-
treated primary NPC, and C17 and C18 were from NPC metastases
that had been treated with radiotherapy or chemotherapy (41).
SV40 T antigen immortalized normal nasopharyngeal epithelial cell
line NP69 and hTERT immortalized normal oral epithelial cell line
NOK were used as normal controls (42, 43).
We initially surveyed the H3K27ac signals at genes known to be

important for NPC. Significant H3K27ac signals were found at the
genes previously shown to be important for NPC prognosis. For
example, significant H3K27ac signals were found near the tran-
scription start site (TSS) of SYK in NPC biopsies, NPC cell line,
and NPC xenografts. In contrast, only background level signals
were present at the control cell lines (Fig. 1A). SYK, a member of
the nonreceptor tyrosine kinase family, is induced by LMP2A in
NPC and epithelial cells (33). SYK signaling promotes epithelial
cell proliferation. Abundant H3K27ac signals were also found at
the BIRC5 (Survivin) promoter, even though the signals were also
evident in the control cell lines (Fig. 1B). The H3K27ac signals at
the gene body and neighboring region were also abundant. BIRC5
is an LMP1-induced prosurvival gene (44).
Model-based analysis for ChIP-seq (MACS) was used to sys-

temically identify significant peak from the NPC samples and the
control samples. We compared the primary NPC tumors C128T,
C88T, C666-1, and C15 with the controls NOK and NP69. In total,
22,639 peaks were shared with NPC and controls; 43,486 peaks
were unique to NPC samples; and 15,971 peaks were unique to
controls (Fig. 1C). HOMER was then used to identify the motifs
enriched in these sites with high H3K27ac signals. De novo motifs
enriched in shared peaks included AP1, ELK4, Sp1, NRF1,
EGR1, YY1, and ZNF143 (Fig. 1C and Table S1, motifs shared by
NPC and controls). De novo motifs enriched in NPC unique peaks
include NF-κB subunit RELA, p50, p52; ETS family members
ETS1; IFN-responsive factors 1 and 2; MYB; and insulator CTCT
(Fig. 1C and Table S1, motifs enriched in NPC samples). De novo
motifs enriched in the control unique peaks include AP-1 family
basic leucine zipper transcription factors (TFs), and more impor-
tantly, TP53 tumor suppressor (Fig. 1C and Table S1, motifs enriched
in control samples). The enrichment of NF-κB motifs in NPC unique
peaks reflected the high NF-κB state in NPCs, likely activated by
LMP1 or mutations in its activation pathways (45).

NPC Super-enhancers. Super-enhancers (SEs) are enhancer clus-
ters critically important in development, differentiation, and
oncogenesis (46). SEs are cooccupied by many TFs, cofactors
such as mediator MED1, histone modification-related proteins
such as epigenetic reader bromodomain- containing protein 4
(BRD4), and basal TFs, accompanied by extraordinarily broad
and high ChIP-seq signals for active enhancer marks including
H3K27ac (46, 47). SE formation is driven by master TF’s binding
to their recognition sites and the recruitment of their associated
cofactors. We recently reported that EBV-encoded oncogenic
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TFs and virus-activated NF-κB can form SEs in lymphoblastoid
cells (38). Fusion TFs resulting from chromosome translocation
can also form SEs (48). Genomic amplifications, mutations in
enhancer region, changes in 3D genome organization, or tumor
virus integration all can lead to cancer cells acquiring new SEs
(49–51). SEs are more sensitive to perturbations than typical
enhancers (TEs) (47, 52). Small-molecule inhibitors including
BRD4 inhibitor JQ1, TFIIH subunit CDK7 inhibitor THZ1, and
mediator-associated CDK8 inhibitor cortistatin A all can pref-
erentially inactivate SEs and stop cell growth (38, 47, 53, 54). SEs
control the expression of key oncogenes including MYC (38, 47).
To identify NPC-specific SEs, H3K27ac signals from sliding

windows of 12.5-kb genomic regions containing enhancers for
NPC biopsies, NPC cell line, NPC xenografts, and control cell
lines were ranked (38, 46). Enhancers with greater than fourfold
H3K27ac ChIP-seq signals than the rest of the enhancers were
assigned as SEs. In total, 1,089 and 770 SEs were identified for
two NPC biopsies; 622 SEs were identified for C666-1; 1,206,
766, and 1,047 SEs were identified for C15, C17, and C18 NPC
xenografts; and 767 and 622 SEs were identified for NOK and
NP69 cells (Fig. 2A). These SEs were then assigned to their
nearest genes. We identified 54 common SEs in four untreated
NPC samples. These 54 NPC SE-associated genes were compared

with the SEs identified from NP69 and NOK cells. Twenty NPC
SEs were absent in normal immortalized epithelial cells. These
genes include ETV6 (Fig. 2B), a member of the ETS transcription
factor family which functions as a transcription repressor. ETV6 is
frequently involved in chromosomal translocations in various he-
matopoietic malignancies (55).

NPC SEs Were Sensitive to BRD4 Inhibition. Chromatin reader BRD4
binds to H3K27ac and recruits CCNT1/CDK9 to phosphorylate
RNA Pol II C-terminal serine 5 residue, thus releasing the paused
Pol II to enable transcription elongation. BRD4 is an important
component of SEs in many cancers (47). JQ1, a small-molecule
inhibitor, blocks BRD4 binding to H3K27ac. SEs are more sen-
sitive to JQ1 perturbation than TEs (47). JQ1 treatment greatly
reduces LCL growth and MYC expression (38). We tested
whether JQ1 treatment has similar effects on C666-1. JQ1 treat-
ment of C666-1 cell reduced cell growth while it had no effect on
NP69 cell growth (Fig. 3A). JQ1 treatment reduced the C666-1
cells in G0/G1 and S phase (Fig. S1). JQ1 treatment significantly
down-regulated the expression of NPC SE-associated genes
ETV6, DNMT3A, EN2, and SGNB in C666-1 cells (Fig. 3B).
JQ1 treatment had no effect on DNMT3A, EN6, and SGNB ex-
pression in control NP69 cells. Higher dose of JQ1 treatment also
reduced the ETV6 gene expression in the control NP69 cells.
However, the JQ1 effect on C666-1 for ETV6 was stronger. At

Fig. 1. NPC epigenetic landscape. H3K27ac ChIP-seqs were done in control
cells, NOK and NP69; NPC cell line, C666-1; primary NPC biopsies, C88T and
C128T; and NPC xenografts, C15, C17, and C18. ChIP-seq reads weremapped to
the human genome and significant H3K27ac peaks were identified using
MACS. (A and B) H3K27ac ChIP-seq signals at SYK and BIRC5 (Survivin) loci. SYK
and BIRC5 TSSs are indicated. The height of ChIP-seq signals are indicated on
the Left of each track. (C) Heatmap of H3K27ac signals at sites shared by NPC
samples and controls, sites unique for NPC samples, and sites unique for con-
trols. Homer was used to identify TF motifs enriched for each cluster. Enriched
motifs for each cluster are listed on the Right of the heatmaps.

Fig. 2. NPC SEs. (A) H3K27ac signals within 12.5-kb window at significant
peaks were ranked for each of the NPC samples. Peaks with four times higher
H3K27ac signals than the rest of the peaks were assigned as SEs (marked in red
box). The rest of the enhancers were marked in blue box. Each enhancer was
assigned to its nearest gene. Genes important for growth and survival are
indicated. (B) NPC ETV6 SE. H3K27ac signals at ETV6 are shown.
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lower dosage, JQ1 treatment had no effect on ETV6 in NP69 cells
but had a significant effect in C666-1 cells.

NPC SE-Driven ETV6 Correlated with Poor Prognosis. SE was found in
ETV6 introns and coding region in all NPC samples. In contrast,
no SE was found in control cell lines. Since ETV6 is known to be
critical in oncogenesis, its expression level was further evaluated
in NPC patient samples.
ETV6 immunohistochemistry (IHC) staining was used to de-

termine ETV6 expression levels in 101 primary NPC biopsies.
ETV6 protein was detected in 85 of 101 (85%) primary NPC
tissues. Most of the ETV6 staining was found in the nuclei
(Fig. 4A). The intensity of ETV6 staining was determined based
on the medium value of IHC score. High ETV6 expression was
found in 53 tumor tissues (52%). To correlate ETV6 expression
with prognosis, patients were classified into ETV6 high and low
groups accordingly. The clinical and demographic data between the
two groups were not significantly different (Table S2). However,
the level of ETV6 was negatively correlated with cancer-specific
survival rate of NPC patients (P = 0.041). Moreover, multivariate
analysis showed that age, T stage, N stage, TNM stage, and ETV6
expression were independent prognostic factors of overall survival
for patients with NPC (Table S3).

Epigenetic Profiles of EBV Genome in NPC. Histone modifications
of EBV genome are evident in LCLs. Very high H3K4me1,
H3K4me3, and H3K27ac signals are present at the LMP1, LMP2,
Cp, Ori-P, and the BART miRNA promoters (36). Enrichment of
H3ac, H4ac, and H3K4me2 was found at the LMP2A promoter in
C666-1 cells (56). However, no genome-wide histone modification
profiles of EBV genome in primary human tumors were reported.
It has also been shown that the EBV gene expression profiles vary
greatly in NPC (20). The most consistently expressed genes in-
clude EBNA1, LMP2A, EBERs, and the BARTmiRNAs (20). To
determine the NPC EBV H3K27ac profiles, ChIP-seq reads from
NPC samples were mapped to the EBV genome. In total, 0.12%
(27,529), 0.19% (44,728), 0.08% (16,042), and 0.05% (18,508)
reads from C15, C18, C666-1, and C88T were mapped to the

EBV genome. Significantly fewer reads were mapped to C128T.
Among the four NPCs with abundant EBV reads, the EBNA1
Q-promoter was the most consistently activated in all four cancers
(Fig. 5). Abundant H3K27ac signals were also found near the
EBV BART miRNAs. In C15, H3K27ac signals were also high
near ori-P and EBER. Only a small peak was found near the
LMP1 promoter. C18, in contrast, had high H3K17ac signals at
lytic origin of replication, ori-Lyt. This is very interesting because
among the NPC xenografts, C18 is the one where EBV latency is
the less stringent with easy induction of BZLF1 and BRLF1 ex-
pression (57). C666-1 had very high H3K27ac signals at ori-P and
EBERs and lower signals at LMP2A and ori-Lyt, in agreement
with LMP2A message level and gp350 protein expression by im-
mune chemistry (40). C88T had abundant H3K27ac signals at ori-P
and very little signals at LMP1 and LMP2A. These data indicated
that, even though it is believed that NPCs are very homogeneous
population-wise, the EBV epigenetic landscapes varied signif-
icantly from patient to patient.

Discussion
NPC patients respond well to radiation therapy and chemother-
apy, especially patients with early-stage cancer. However, early
diagnosis is difficult to achieve. Patients with late-stage cancer or
metastases have much poorer prognosis. Even among patients
who are cured, late secondary effects remain a major concern,
especially xerostomia. New therapies are therefore needed to im-
prove NPC patient overall survival. Epigenetic alterations in cancer
cause oncogene overexpression and tumor suppressor silencing,
without affecting the DNA sequences. These epigenetic alterations
are usually reversible, possibly by small-molecule inhibitors targeting

A

B

ET
V6 ET

V6

Fig. 3. NPC cells are susceptible to BRD4 inhibition. (A) C666-1 and NP69 cells
were treated with indicated JQ1 with vehicle as control for 3 d. CellTiter-Glo
luminescent was used to determine the cell viability. C666-1 cells treated with
JQ1 grow significant slower than DMSO-treated cell (P < 0.01). JQ1 does not
slow NP69 cell growth in the same time course. (B) Total RNAs from C666-1 and
NP69 cells treated with JQ1 or vehicle were analyzed by qRT-PCR for ETV6,
DNMT3A, EN2, and SGNB expression, normalized against GAPDH. DMSO-
treated cells were set to 1. *P < 0.05, **P < 0.01.

Fig. 4. ETV6 expression correlates with poor survival in NPC patients.
ETV6 immunohistochemistry staining was used to determine the ETV6 protein
expression levels in primary NPC samples. (A) Expression levels of ETV6 in low-,
medium-, and high-expression group. (B) Kaplan–Meier cancer-specific survival
curve for NPC patients with high or low ETV6 expression. High expression, n =
53; low expression, n = 48.
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epigenetic enzymes. These epigenetic enzyme inhibitors may in-
activate oncogenes or restore the expression of tumor suppressor
to halt cancer cell growth. The cancer cell’s addiction to epigenetic
alterations can also be targeted to selectively kill these cancerous
cells. Currently, histone deacetylase inhibitors are used in clinical
treatment of various cancers and many other unique inhibitors are
in clinical trials.
Expression profilings using microarrays or RNA-seqs identified

global NPC-specific expression changes that were critical for NPC
pathogenesis. Here, we used a unique approach to assess the NPC
global histone epigenetic landscapes. Our findings not only further
confirmed many known NPC biomarkers but also identified
unique NPC markers. A large number of NPC unique enhancers
were identified by this approach. Many of them are located in
the intergenic regions. Their directly associated genes will be
identified by assays interrogating the 3D genome organization in
future analyses.
It is believed that master pioneering TFs first bind to DNA

and subsequently recruit histone-modifying enzymes to alter the
epigenetic landscapes. These TFs are likely to be critically im-
portant for the formation of active enhancer sites. The TF motifs
enriched at the enhancers shared by NPC and normal controls
cell lines included TFs involved in diverse biologic processes.
These TFs are likely to be important for nasopharyngeal epi-
thelial cells. Interestingly, both YY1 and ZNF143 motifs were
enriched in the group. These proteins are important for the 3D
genome organization, suggesting that long-range enhancer pro-
moter interactions are also likely important for these cells. Strikingly,
TP53 tumor suppressor motif was highly enriched in the control
cells. TP53 mutations are detected in a subset of NPCs, especially
at late stages, but their frequency is low by comparison with most
other head and neck carcinomas (about 10% in contrast with more
than 60%) (45, 58). However, in malignant NPC cells, the TP53

protein is likely to be functionally inactivated by mechanisms which
are not yet elucidated. The motifs enriched at the NPC unique
cluster included NF-κB, IRF1, and MYB. Activation of NF-κB
pathways is now recognized as the most consistent alteration in the
signaling landscape of NPC cells. Interestingly, it is achieved by
various mechanisms which are either dependent on viral factors
(mainly LMP1 expression) or dependent on cellular gene alter-
ations (45). Mutations in NF-κB negative regulators including
CYLD, TRAF3, and NFKBIA were found in 41% of NPC sam-
ples, and these mutations and LMP1 expression were mutually
exclusive (45). EBV LMP2 is more consistently expressed in NPC
and may be involved in NF-κB activations. IRF1 is involved in the
oncogenesis of various cancers (59). MYB is involved in the
pathogenesis of several different cancers including some leukemia,
colon, and breast cancers (60). MYB can be activated by SEs
formed by translocations in adenoid cystic carcinoma (61).
SEs have great impact on cancer cell growth and survival (47).

SEs are much larger complexes than TEs and are more suscep-
tible to perturbations. Several small-molecular inhibitors of SE
constituents are effective in killing different cancer cells (38, 47,
53). Here, we found NPC SEs were susceptible to perturbation
and targeted an important oncogene, ETV6. ETV6 is an ETS
family TF. ETV6 is frequently involved in different chromosome
translocations that result in the formation of different fusion
genes in different cancers. For example, ETV6-NTRK3 is found
in salivary gland tumor and secretory breast carcinoma (62, 63).
ETV6-RUNX1 fusion can promote the survival of acute lympho-
blastic leukemia cells (64). Overexpression of ETV6 also correlates
with poor prognoses for non–small-cell lung cancer (65).
EBV genomes persist as episomes in cancer cells. In LCLs,

EBV genomes are chromatinized, and histone modifications
related to active transcription, including K3K4me1, H3K4me3,
and H3K27ac, are evident at EBV episomes in regions where
active transcription occur (36). Similarly, Karposi sarcoma-
associated herpes virus persists in Karposi sarcoma as chroma-
tinized episome (66). In NPC, the most consistent H3K27ac
signals were EBNA1 Qp, EBERs, ori-P, and miRNA, consistent
with their near ubiquitous expression or activity among NPC
samples. Lack of H3K27ac signals at the LMP1 promoter or
gene body in C666-1 is consistent with previous findings that
LMP1 is not detectable at protein level in these cells (67).
Our study suggested that epigenetic profiling can be used to

effectively identify NPC biomarkers. We also found that NPC
cell line was susceptible to histone modification reader, BRD4
inhibition. Identification of altered histone modification enzymes
(writers, readers, and erasers) in NPC will likely enable the de-
velopment of unique therapeutics.

Materials and Methods
H3K27ac ChIP-seq (38) was used to identify NPC SEs from NPC cell line C666-1,
normal oral keratinocytes (NOKs) and nasopharynx keratinocytes (NP69), NPC
xenografts, and primary NPC tissues. For IHC, the primary NPC tissues was
stained (68) using the anti-ETV6 antibody. The intensity and percentage of IHC
staining was scored by two pathologists independently. The primary NPC tis-
sues for tissue microarray were obtained from the Department of Pathology of
Sun Yat-sen University Cancer Center (SYSUCC), with the approval of SYSUCC
IRB and prior patient consents. More details are provided in SI Materials
and Methods.
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Fig. 5. Epigenetic landscape of EBV genome in NPC. H3K27ac ChIP-seq
reads were mapped to the genome of Akata EBV stain. (A) Overall view of
the EBV genome. Sample names are indicated on the Left of the tracks. Peak
heights are listed next to each track on the Left. EBV genome annotation is
under the tracks. (B) Zoom-in view of major peaks.
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